
Deepankar B.
"Transformation Reise mit der Databricks Data Intelligence Plattform"
Was gefällt dir am besten Databricks Data Intelligence Platform?
Als Dateningenieur, der in den letzten zwei Jahren mit Databricks gearbeitet hat, kann ich ehrlich sagen, dass die Plattform die Herangehensweise an Dateningenieurprojekte komplett verändert hat. Vor Databricks standen mein Team und ich oft vor Herausforderungen bei der Verwaltung großer Datensätze und der Sicherstellung einer reibungslosen Zusammenarbeit zwischen Dateningenieuren und Datenwissenschaftlern. Es gab Zeiten, in denen sich Arbeitsabläufe unzusammenhängend anfühlten, und das Beheben von Problemen über verschiedene Tools hinweg nahm viel Zeit in Anspruch.
Databricks hat all das verändert. Besonders das Feature der kollaborativen Notebooks war ein Wendepunkt. Ich kann jetzt nahtlos in Echtzeit mit Datenwissenschaftlern zusammenarbeiten, Probleme beheben und Lösungen viel schneller iterieren. Zum Beispiel konnten wir während eines kürzlichen Projekts ein maschinelles Lernmodell innerhalb von Tagen verfeinern, dank der Möglichkeit, Notebooks einfach zu teilen und schnell gemeinsam Experimente durchzuführen. Diese Art der Zusammenarbeit dauerte früher mit anderen Tools Wochen.
Das Auto-Scaling-Feature war ein Lebensretter. Ich erinnere mich lebhaft an die Leistungsprobleme, die wir beim Verarbeiten großer Datensätze auf unserer alten Infrastruktur hatten. Jetzt passt Databricks die Ressourcen automatisch basierend auf der Arbeitslast an, sodass wir uns nie um die Verwaltung der Rechenleistung kümmern müssen. Dies hat die Verarbeitungszeiten drastisch verkürzt. Zum Beispiel dauert ein Datenumwandlungsjob, der früher Stunden in Anspruch nahm, jetzt nur noch einen Bruchteil der Zeit, was es uns ermöglicht, Projekte schneller zu liefern.
Delta Lake war ebenfalls von unschätzbarem Wert. Bevor wir es nutzten, waren Datenkonsistenz und -qualität ständige Sorgen, besonders beim Umgang mit großen und vielfältigen Datenquellen. Jetzt können wir mit Delta Lake darauf vertrauen, dass unsere Daten nicht nur von hoher Qualität, sondern auch leicht zugänglich und abfragbar sind. Ein besonderes Beispiel war, als wir eine komplexe Datensatz-Pipeline neu aufbauen mussten. Delta Lake ermöglichte es uns, mit inkrementellen Datenaktualisierungen zu arbeiten, was den Prozess viel effizienter und zuverlässiger machte.
Kurz gesagt, Databricks hat die Entwicklungszeit erheblich reduziert und die Gesamtqualität unserer Lieferungen verbessert. Es hat mir geholfen, komplexe Arbeitsabläufe zu straffen, die Zusammenarbeit zwischen Teams zu verbessern und vor allem datengetriebene Lösungen schneller und mit größerem Vertrauen zu liefern. Bewertung gesammelt von und auf G2.com gehostet.
Was gefällt Ihnen nicht? Databricks Data Intelligence Platform?
Kostenoptimierung - Während ich die detaillierten Abrechnungsinformationen schätze, kann die Vorhersage von Kosten für große Projekte oder geteilte Umgebungen immer noch undurchsichtig erscheinen. Viele Teams kämpfen damit, unkontrollierte Kosten durch inaktive Cluster oder suboptimale Konfigurationen zu kontrollieren. Die Einführung intelligenterer Autoskalierung und Empfehlungen, die auf unsere Workloads zugeschnitten sind, wäre von unschätzbarem Wert. Zum Beispiel könnten Warnungen für "inaktive Cluster" oder "Kosten-Hotspots" in unserer Umgebung proaktiv Budgets sparen und die Effizienz verbessern.
Vereinfachte Governance und Sicherheit - Das Verwalten des Zugriffs auf feingranularer Ebene kann umständlich sein. Zum Beispiel erfordert die Kontrolle darüber, wer ein Notebook oder einen Job ansehen oder ausführen kann, oft Umgehungslösungen. Audit-Logs sind ausgezeichnet, aber sie für umsetzbare Erkenntnisse zu verstehen, fühlt sich manchmal wie das Lösen eines Puzzles an. Verbesserte attributbasierte Zugriffskontrolle (ABAC) und intuitivere, UI-basierte Steuerungen für das Berechtigungsmanagement würden die Abläufe erheblich vereinfachen.
Benutzererfahrung - Die kollaborative Notebook-Oberfläche ist eines der herausragenden Merkmale von Databricks, doch es gibt Bereiche, in denen sie reibungsloser sein könnte. Die Zusammenarbeit wird manchmal behindert, wenn zwei Benutzer dasselbe Notebook bearbeiten. Die Versionskontrolle wirkt im Vergleich zu Git-basierten Systemen grundlegend. Das Debuggen innerhalb von Notebooks, insbesondere für nicht-Python-Workloads, könnte erheblich verbessert werden. Das Hinzufügen von Inline-Kommentaren, Konfliktlösungswerkzeugen und robusten Debugging-Funktionen würde die Plattform auf die nächste Stufe heben. Ein Aktivitäts-Feed auf Workspace-Ebene, um zu zeigen, was in gemeinsamen Projekten passiert, wäre ebenfalls äußerst hilfreich. Bewertung gesammelt von und auf G2.com gehostet.
Wir freuen uns zu hören, dass die Databricks Data Intelligence Platform Ihre Herangehensweise an Dateningenieurprojekte verändert hat. Wir schätzen Ihr positives Feedback zu den kollaborativen Notebooks, der automatischen Skalierung und den Delta Lake-Funktionen sehr. Wir verstehen Ihre Bedenken hinsichtlich Kostenoptimierung, Governance und Sicherheit, Benutzererfahrung und Workflow-Automatisierung und werden diese berücksichtigen, während wir daran arbeiten, unsere Plattform zu verbessern. Herzlichen Dank, dass Sie sich die Zeit genommen haben, ein ausführliches Feedback zur Plattform zu schreiben – wir freuen uns, dass Sie verstehen, wie Databricks eine datengesteuerte Kultur fördert!
Der Bewerter hat einen Screenshot hochgeladen oder die Bewertung in der App eingereicht und sich als aktueller Benutzer verifiziert.
Bestätigt durch LinkedIn
Dieser Bewerter erhielt als Dank für das Ausfüllen dieser Bewertung einen symbolischen Anreiz.
Einladung von G2 im Namen eines Verkäufers oder Partnerunternehmens. Dieser Bewerter erhielt als Dank für das Ausfüllen dieser Bewertung einen symbolischen Anreiz.
Diese Bewertung wurde aus English mit KI übersetzt.